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Electronic transmission properties in a mesoscopic necklace with nonlinear impurities
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The electronic transmission properties of a necklace of loop system with nonlinear impurities is studied. It
shows a multivalued dependence of the transmitted intensity on the input intensity in this nonlinear system. For
the transmission-energy relation, if the nonlinearity parameter is zero, there exists a range in the lower-energy
region where no transmitting is permitted. If the nonlinearity parameter is nonzero, there will be transmitting
peaks in the originally transmitting inhibited region of the corresponding linear system.
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PACS numbdss): 52.35.Mw, 73.23-b

I. INTRODUCTION normal-conductor loop21,22 and obtained many interest-
ing results. In their systems, rings are serially connected via
Quantum transport through the mesoscopic systems haslead between two succeeding rings. In this paper we will
been extensively studied both experimentally and theoretiinvestigate the electronic transmission properties of a meso-
cally during the last yearsl—10]. With the development of Scopic open necklace of loop geomel&8] with nonlinear
fabrication technology in semiconductors and related areagipurities. The nonlinear impurity arises from the strong lo-
people can fabricate devices at size smaller than the singl&al interaction between electrons and lattice vibrations in the
particle electronic coherence length. The electrons can tunn@diabatic regim¢24—27. The necklace consists of several
through the samples coherently. In such mesoscopic systen80Ps in series and each loop is threaded by a magnetic flux
the dimension of the devices is so small that the electrof- The nonlinear impurity is located on each loop node. The
transport initis governed by quantum mechanics rather thaﬁtructure of it is illustrated in Flg 1. This structure is similar
classical mechanics and shows some interesting quantuf Takai and Ohta’s but differs from theirs in that the suc-
mechanical effects, such as persistent current in isolated méeeding rings in this model are directly connected, and our
soscopic ringg5], etc. This may open a very rich field of aim is to investigate the effects of nonlinearity impurities on
great theoretical and experimental interest concerning thedg€ electronic transmission properties.
devices. It is easy to write the equations for the wave amplitudes
For the mesoscopic systems, the theoretical study har the upper arm, the lower arm, and the necklace nodes as
largely concentrated on the persistent current of isolated
rings[5,6,11] and the transmission of electrons through open _ - . _
ring systems which are connected via leads to elecgtronpres— Eom=e"""xm- 11"+ eyt ey
ervoirs[12-14. In both cases, the rings are threaded by a N eml2em, (1)
magnetic flux®. In these studies, the mesoscopic systems
are considered as ideal systems, and the idealized samples
are treated as waveguic[g4,l$|. However, in reality, the Exm=e "o, +e o .1, 2
ideal system is the exception rather than the rule. There may
be electron-electrorefe) interaction, electron-phonore{p)
interaction, impurities or other defects in the real mesoscopic
systems and thus the quantum mechanical effects will be
affected by them. The effects @fe interaction have been
stressed by many authors and some interesting results hav
been obtainedl11,17,18. On the other hand, disorder in the
mesoscopic systems is also considered by many authors
[19,20. But less attention was paid to the effects esp
interaction in mesoscopic systems. FIG. 1. The illustration of a necklace of loop geometry. It is
Recently, Takai and Ohta investigated the quantum oscileonnected to linear leads at the two ends. Each loop is threaded by
lation and Aharonov-Bohm effect in a multiply connected magnetic flux®.
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Eym=e"omte o1, ©) Usually, ¢, should be complex variable, thus E¢p)
gives a four-dimensional nonlinear dynamical mapping
where y=27®/®,, Py=h/e, \ is the nonlinearity param- [Re(e),Re(@m-1),IM(om),Im(em-1)]. Generally, in a
eter characterizing the strength of nonlinear impurity, Bnd nonlinear dynamical mapping with degrees of freedom
is the eigenvalue. The nearest-neighbor overlap integral is seteater than 2, there will be a so-called Arnold diffusion
to be 1 as a unit of energy. Eliminating, and ¢, leads to  [30,31. As a result, one cannot guarantee the existence of a
the following equation: particular bounded orbi(Re(¢,,),Im(¢,)) over arbitrary
4 ) ) distance on the nonlinear system. Fortunately, thanks to the
I P 4 e Y 2 _ conservation of probability current{I=Im(¢nen_1)
(E E)‘Pm 0% ¥m-1 Ecosf(Pm“H\'@m' ¢m=0. =T2sink] in our problem, the above mapping can be re-
(4)  duced to a two-dimensional one, thus ruling out the possibil-
ity of the Arnold diffusion. Following Bountiset al. and

II. THE NONLINEAR DYNAMICAL MAPPING Wan and Soukouli§32,33, we introduce the following two
variables:
The system that will be considered here consists of a
necklace of loops havinly loops with nonlinear impurity on | oml?
the loop nodes described by Ed) embedded in an infinite Xm= T2

one-dimensional linear periodic chain as leads. We will
study the problem of stationary transmission through this

nonlinear necklace. The wave function in the linear lead is _Re((Pm(P}knfl) ®)
taken as a single Bloch wave specified by a wave vdctor Ym= T2 '
Thus
e ik and obtain the reduced nonlinear dynamical mapping for the
em=Ree™"+Rie”",  m<1 above nonlinear system:
4 2 Y Y21+ (3IT?)?
(E—E)@fgcosi(somﬁ ¢m-1)—Meml*em, xmz’“*le v on,
m
2<m=N-1 (5) E2-4 E )
" Ym=~Ym+1F Xm 2C08y/2+2008y/2)\T| Xm|: ()
omp=T€"" m=N
. . S . : . 2=smsN-1.
while for the two boundaries, the equation is a little different:
At the boundaries,
2 2 vy >
E_E QDN_ECOSEQDN—1_¢N+1+)\|€DN| en=0, y2 1+ (JIT?)2
XN= T
2 2 , N+t (10)
E—£)¢1~ £00S; 2~ ¢ot Me1]*¢1=0, () _ -E N N 2_o
_ . . INT 2cogy2 YN LT XN S cogyr2 T 2cosy/2)’
whereRy, Ry, andT are defined as the incoming, reflected,
and outgoing wave amplitudes, respectively. The transmis- Y2+ (JIT?)?
sion coefficient is then given by XM=
, ’ (11
= _|T| 7) - E p £ 2
IRol? Y1~ 5cogn2Y2 X MTPPa+| E- gl

and the relation| R0|2=_|R1|2+|T|2 should be required to with the initial conditionxy =1, yy.;=cosk.
satisfy the conservation of probability current. We can From Eq.(8), we can get the expression for transmission
choose the overall constant phase for the wave functions sgpefficient:

that T is real.
For this nonlinear transmission problem, it is usually not 4sirfk (12
t

possible to define uniquely the transmission coefficient as a
function of the incident intensitR, since there may be sev-
eral combinations ofR;,T) satisfying Eq(5), leading to the wherexg, X, ,y; can be obtained by iterating E¢@) from the

ficulty, instead of starting from the input end, we solve the

inverse transmission problem, i.e., we compute the input am- Il RESULTS AND DISCUSSIONS

plitude R, for the case with fixed outgoing amplitude We

will see from Eq.(5) that Ry, R;, and thus the transmission ~ The main results are shown in the figures.

coefficientt can be uniquely determined By. In Figs. 2 and 3, we show how the input intensity varies

 Xy+Xo— 2y,00%k+ 2sirPk’
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FIG. 2. The relation betweef? and|Rg|? for different nonlin- oal . . ' :
earity parameters witth =0.1®,, andE=1. (a) A\=1, (b) A=0.5, 06 09 12

(©) \=0.1.
IR

0

with tran_smitt(_ad intensity with fixed energy, magnetic flux, FIG. 3. TheT2—|R,|? relation as a function o> with A=1,
and nonlinearity parameter. _ E=1.(a ®=0, (b) ®=0.2D,, (c) ®=0.3D,. Note that the trans-

Fl_gure_2 is to show the effect of the magnltude_of the mission region in(c) is in the range 0.432 T2<0.757.
nonlinearity parameter on tHE?— |Ry|? relation under fixed
magnetic flux. We choosE=1, k= 7/3, and magnetic flux the T?—|Ry|? relation. In this caseE=1.0, k=x/3, \
®=0.1d,. From the figure we can see that the incident in-=1.0. Figure 8a) is the case with zero magnetic flux. There
tensity |Ro|? is a single-valued function of the transmitted is no transmission gap in this figure. Figur@Bcorresponds
intensity T2, while T2 is a multivalued function ofRy|2,  to a magnetic fluxb=0.2d,, we find that there is a gap in
which is the source of multistability. The multistability can this case. For a larger magnetic flux as shown in Fig),3
result in resonant transmission, but there are interruptinghe gap is much larger. Now the transmitting region lies in
smooth or monotonic regions accompanied by narrow burstie region 0.43%T2<0.758 only. From the above results,
of irregular variations, especially for large Finally, with ~ we can see that the effect of magnetic flux on theR,
the increase of transmitted intensity, the incident wave amrelation is to broaden the transmission gap.
plitude diverges and thus no transmission is possible. In this We show in Fig. 4 the transmission coefficientas a
case, the map entered the nontransmitting re{@8 function of energyE for given transmitted intensity2, mag-

In Fig. 3 we aim to show the effect of magnetic flux on netic flux ®, and nonlinearity parameter. We see in Fig.
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12 also symmetric with respect to zero eneltjye energy band
centej as in Fig. 4a). Only when the energy of the incident
electron is greater than a critical valte does transmission
occur. In this figureE.=0.447. This critical value increases
with the increase of the magnetic flux until wheh
=0.5b, and transmission in the energy band of the linear
leads is inhibited, then it decreases when the magnetic flux
increases from 0®6,. As &=d, the above phenomenon
recurs. So the critical value has a peribg in magnetic flux
and it is symmetric with respect to @%. When the nonlin-
earity parameter is nonzefbig. 4(c)], we find that there will
be transmission in the inhibited region for the corresponding
linear system. Moreover, transmission will occur even when
the magnitude of the nonlinearity parameter is very small
e L (for example, even when=10"9, there still exists a trans-
1® mission peak significantly greater than zero in the inhabited
region for the corresponding systgnin details, when\ is
positive, the transmission will occur in the positive-energy
region of the “inhibited region,” but in the negative-energy
region of the “inhibited region,” there is no transmission
phenomenon, moreover the transmission coefficient ap-
proaches zero even faster at this region than the case with
zero nonlinearity parameter. In the case with negative non-
linearity parameter, this transmitting region “moves” to the
negative-energy region of the “inhibited region” of the lin-
l ear system, while the positive-energy region of the corre-
00 £ .-0447 sponding “inhibited region” is transmission inhibited. Thus
the t—E spectral in the case with nonzero nonlinearity pa-
rameter is no longer symmetric with respect to zero energy.

The existence of a transmission-inhibited region for the
corresponding linear system can be understood by inspecting
the energy band of an infinite linear necklace system
threaded by a magnetic flux.

From Eq.(4), when\ =0, we can obtain the energy spec-
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FIG. 4. Transmission coefficientas a function of energy with
fixed output intensityr?=0.1.(a) ®=0, A =0, transmission occurs
when E lies between -2 and 2. (b) &=0.1®, A=0, a —21/ 1+COS%/, -2/ 1—00%, (15)
transmission-inhibited region emerges in the rang8.447%<E

<0.447.(c) ®=0.1P,, A=0.1. Now transmission occurs in the L o . .
positive-energy part of the inhibited region of the correspondingWhich is plotted in Fig. 5. The permitted regions are denoted
linear case as shown if). by 1,2,3,4,5,6. From the figure, we see that the permitted

energy ranges from-{2+/2,2/2) when the®=0. The en-
4(a) that when no magnetic flux is added to the system anargy band of the linear leads-@,2) lies in this range, so
the nonlinearity parameter is 0, the transmission existéransmission can occur throughout the whole energy band of
throughout the whole energy band of the linear leadghe leads. Asb increases from 0, the permitted energy is
(—2.0,2.0) and the transmission is close to resonant transtow determined by Eq14) and Eq.(15), which depends on
mission for the low-energy regiongleep center of the en- magnetic flux. If the energy of the incident electron is small,
ergy band. In Fig. 4b), a magnetic flux is added but the it might lie outside the permitted range, thus leading to a
nonlinearity parameter is 0, the transmission in the lowernontransmitting behavior. Quantitatively, as in the case in
energy region is inhibited, and the transmission spectral i§ig. 4b) (®=0.1), the critical valud determined from the
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FIG. 5. Th band of the li infini K h FIG. 6. The spatial distribution of electronic probabilitgot
- ©. The energy band of the linear infinite necklace. enormalized X, corresponding to a transmitted behavidr

permitted energy lies in the region enclosed by the curves of Eq.=O 997 88 WithE=0.4310 A=0.1. T2=0.1. ®=0.1P-. It is an
(14) and Eq.(15) as shown in the figure denoted by 1,2,3,4,5,6. exténded wave ' ' " - o

figure is about 0.447; from Fig. 5, the permitted range of the
necklace system, we can find out that the permitted energy
should be greater than or equal to 0.447, or less than or equa 107
to —0.447. The two results are in exact agreement with each 10
other.

The occurrence of the transmission peaks in the inhibited
region for the corresponding linear system in the case with {47
nonzero(even though it can be very smationlinearity pa- 10
rameter is the most interesting phenomenon of our result.  10°
This transmission behavior is completely due to nonlinearity
and its nature is nonperturbative. It can be understood as
follows. When the nonlinearity parameter is nonzero, the en-  4¢"
ergy band of the necklace system has been changed. And the<” 10°
originally inhibited energy of the linear system may become 10°
permitted energy in the nonlinear system. Thus the electrons
with energy located in the inhibited region of the linear sys- 10°
tem may tunnel through the nonlinear system inducing an  1¢°
excitation in it since its energy is now in the permitted region 10
of the nonlinear system. In order to see more clearly, we 10°

b R Rl U R R R R R R R L R R R L s R R R R R KL R R

show in Fig. 6 and Fig. 7 the spatial distribution of wave 181

amplitudex, for transmitting and nontransmitting behavior. 10°

Figure 6 corresponds to a transmitting peakeat0.4310¢ 10"

=0.997 88 forx=0.1,0=0.1,T?=0.1. We see that it is an 10° p~ T m——.
extended wave. In Fig. 7 it corresponds to a nontransmitting .

behavior for the same parameters as Fig. 6 huatO.
An important difference now appears. It is now an exponen- g, 7. The spatial distribution of electronic probabiliGgot
tially decaying wave function attenuating as,~3  normalized x, corresponding to a nontransmitted behawier0
X 10%%exp(—n/7). with E=0.4310,A=0, T?=0.1, ® =, It is an exponentially de-

Figures 8 and 9 are the transmission as a function of magzaying wave, attenuating ag~ exp(—n/7). The dotted line is the
netic flux for fixed energy, transmitted intensity, and nonlin- above fitting function.
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FIG. 8. The relation betweanand® for energy near the energy
band edgeE=1.98, andT?=0.1. The three curves correspond to
three different nonlinearity parameters. #&t=0.50, they all ap-
proach zero.

(c), A=-1

0.08 +

earity parameter. Figure 8 is to investigate the effects of
nonlinearity on the transmission spectral for the energy at the ¢4
band edge of the lead with ener§y=1.98 and fixed output
intensity T2=0.1. We see that the transmission coefficient is

a periodic function of® with a period®, no matter the {
magnitude of the nonlinearity parameter. And we see that the o, |

transmission coefficient is symmetric with respect todgy5

When® =0.5b, the transmission coefficient becomes zero. 0.0 04 08 12 16
In a closer look, a® is approaching 0%, the transmission DD )
coefficient decays to zero much more rapidly when in the 0

case with nonzero nonlinearity parameter. This can be seen
from Eq. (9). At first, we consider the case in whidh=0.
When y— m, cosf/2)—0, as a sequence, the map will di-
verge asy,,~VYn+1, thus leading to a nontransmitting behav-
ior. When the nonlinearity parameter is nonzero, the map'easy” to be in the permitted region for ang (see Fig. 5.
diverges awn~yﬁ+1, obviously, it increases much faster  For the case with lower energy, the results are quite dif-
than the linear case for the sarde Physically speaking, ferent from the case at the band edge of the ldacher
when® =0.5D, the phase factor imposed by the magneticenergy. In Fig. 9, we plot the results of an energy=0.01
flux on the wave function of the electrons on the two arms ofand fixed output intensitf?=0.1 for different nonlinearity

a loop is7 and — 7, respectively, thus the outgoing wave parameters. Figure(d is the case that =0. For this linear
will be suppressed due to interference. So, the transmissiarase, the transmission peak is very sharp, and only wihen
coefficient is extremely small. We also observe that whken is very close tk®, (k=0,=1,%£2,...) is thetransmission

is nonzero, the position of the transmission peak is shiftedoefficient significantly greater than 0. In the case of a posi
from the position of transmission peak of the correspondingive nonlinearity parameter, the results are shown in Fig.
linear system. We also considered the case with negative 9(b). Now new peaks around the “old” peak emerge. The
But numerical studies show that there is not much differencéocations of these new peaks are relatively “farther away”
between the case with negative and positive nonlinearity pafrom kd,. However, when the nonlinearity parameter is
rameter. It can also be seen from the previous figures that ategative, which is the case of Fig(c®, the transmission is
the band edge of the lead, the transmission seems insensitideastically suppressed by nonlinearity. The occurrence of
to the nonlinearity parameter sinBe=2.0 always belongs to transmission peak only &d, for the linear system can be
the permitted region and the energy very close to 2.0 isinderstood as follows: In this case only when the magnetic

FIG. 9. The relation betweenand® for low energyE=0.01.
(@ A=0,(b) \=1, and(c) A=—1. We can see that transmission is
drastically suppressed by nonlinearity(i).
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flux is close tok®, doesE=0.01 belong to the permitted In summary, we have investigated the electronic transport
energy of this system; wheh increasegor decreasgsfrom properties through a mesoscopic ring with nonlinear impurity
these valuesE=0.01 moves outside of the energy band ofat the loop nodes and obtained some interesting results. We
the necklace loop system. These results are also in agreemdimd that the transmission behavior in this system is drasti-
with that of Fig. 4, where we find that a positive nonlinearity cally affected by nonlinearity. In a nonlinear system, the
parameter will cause “new” transmission peaks in the posi-transmission coefficient is no longer uniquely determined by
tive part of the inhibited region of the corresponding linearinput intensity but by output intensity. When the nonlinearity
system and a negative nonlinearity parameter will hasten thparameter is nonzero, there will be transmission in the
increase of X,,y,) and therefore lead to the suppression oftransmission-inhibited region of the corresponding linear
electronic transmission in the positive part of thesystem. In detail, a positivenegative nonlinearity will en-
transmission-inhibited region. It can be implied that whenhance the transmission of electrons with energy in the posi-
E=—0.01, a positive nonlinearity parameter will strongly tive (negative part of the transmission-inhibited region.
suppress the transmission while a negative one will enhancthese results may be useful for the fabrication of quantum
it. devices.
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