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Electronic transmission properties in a mesoscopic necklace with nonlinear impurities
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The electronic transmission properties of a necklace of loop system with nonlinear impurities is studied. It
shows a multivalued dependence of the transmitted intensity on the input intensity in this nonlinear system. For
the transmission-energy relation, if the nonlinearity parameter is zero, there exists a range in the lower-energy
region where no transmitting is permitted. If the nonlinearity parameter is nonzero, there will be transmitting
peaks in the originally transmitting inhibited region of the corresponding linear system.
@S1063-651X~98!05007-7#

PACS number~s!: 52.35.Mw, 73.23.2b
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I. INTRODUCTION

Quantum transport through the mesoscopic systems
been extensively studied both experimentally and theor
cally during the last years@1–10#. With the development of
fabrication technology in semiconductors and related ar
people can fabricate devices at size smaller than the sin
particle electronic coherence length. The electrons can tu
through the samples coherently. In such mesoscopic syst
the dimension of the devices is so small that the elect
transport in it is governed by quantum mechanics rather t
classical mechanics and shows some interesting quan
mechanical effects, such as persistent current in isolated
soscopic rings@5#, etc. This may open a very rich field o
great theoretical and experimental interest concerning th
devices.

For the mesoscopic systems, the theoretical study
largely concentrated on the persistent current of isola
rings @5,6,11# and the transmission of electrons through op
ring systems which are connected via leads to electron
ervoirs @12–16#. In both cases, the rings are threaded b
magnetic fluxF. In these studies, the mesoscopic syste
are considered as ideal systems, and the idealized sam
are treated as waveguide@14,15#. However, in reality, the
ideal system is the exception rather than the rule. There
be electron-electron (e-e) interaction, electron-phonon (e-p)
interaction, impurities or other defects in the real mesosco
systems and thus the quantum mechanical effects will
affected by them. The effects ofe-e interaction have been
stressed by many authors and some interesting results
been obtained@11,17,18#. On the other hand, disorder in th
mesoscopic systems is also considered by many aut
@19,20#. But less attention was paid to the effects ofe-p
interaction in mesoscopic systems.

Recently, Takai and Ohta investigated the quantum os
lation and Aharonov-Bohm effect in a multiply connect
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normal-conductor loop@21,22# and obtained many interes
ing results. In their systems, rings are serially connected
a lead between two succeeding rings. In this paper we
investigate the electronic transmission properties of a me
scopic open necklace of loop geometry@23# with nonlinear
impurities. The nonlinear impurity arises from the strong
cal interaction between electrons and lattice vibrations in
adiabatic regime@24–27#. The necklace consists of sever
loops in series and each loop is threaded by a magnetic
F. The nonlinear impurity is located on each loop node. T
structure of it is illustrated in Fig. 1. This structure is simil
to Takai and Ohta’s but differs from theirs in that the su
ceeding rings in this model are directly connected, and
aim is to investigate the effects of nonlinearity impurities
the electronic transmission properties.

It is easy to write the equations for the wave amplitud
for the upper arm, the lower arm, and the necklace node

Ewm5e2 ig/4xm211eig/4cm211eig/4xm1e2 ig/4cm

2luwmu2wm , ~1!

Exm5e2 ig/4wm1eig/4wm11 , ~2!

FIG. 1. The illustration of a necklace of loop geometry. It
connected to linear leads at the two ends. Each loop is threade
magnetic fluxF.
2408 © 1998 The American Physical Society
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Ecm5eig/4wm1e2 ig/4wm11 , ~3!

whereg52pF/F0, F05h/e, l is the nonlinearity param
eter characterizing the strength of nonlinear impurity, andE
is the eigenvalue. The nearest-neighbor overlap integral is
to be 1 as a unit of energy. Eliminatingxm andcm leads to
the following equation:

S E2
4

EDwm2
2

E
cos

g

2
wm212

2

E
cos

g

2
wm111luwmu2wm50.

~4!

II. THE NONLINEAR DYNAMICAL MAPPING

The system that will be considered here consists o
necklace of loops havingN loops with nonlinear impurity on
the loop nodes described by Eq.~4! embedded in an infinite
one-dimensional linear periodic chain as leads. We w
study the problem of stationary transmission through t
nonlinear necklace. The wave function in the linear lead
taken as a single Bloch wave specified by a wave vectok.
Thus

wm5R0eikm1R1e2 ikm, m<1

S E2
4

EDwm5
2

E
cos

g

2
~wm111wm21!2luwmu2wm ,

2<m<N21 ~5!

wm5Teikm, m>N

while for the two boundaries, the equation is a little differe

S E2
2

EDwN2
2

E
cos

g

2
wN212wN111luwNu2wN50,

S E2
2

EDw12
2

E
cos

g

2
w22w01luw1u2w150, ~6!

whereR0, R1, andT are defined as the incoming, reflecte
and outgoing wave amplitudes, respectively. The transm
sion coefficientt is then given by

t5
uTu2

uR0u2
, ~7!

and the relationuR0u25uR1u21uTu2 should be required to
satisfy the conservation of probability current. We c
choose the overall constant phase for the wave function
that T is real.

For this nonlinear transmission problem, it is usually n
possible to define uniquely the transmission coefficient a
function of the incident intensityR0 since there may be sev
eral combinations of (R1 ,T) satisfying Eq.~5!, leading to the
phenomena of multistability@28,29#. To circumvent this dif-
ficulty, instead of starting from the input end, we solve t
inverse transmission problem, i.e., we compute the input
plitudeR0 for the case with fixed outgoing amplitudeT. We
will see from Eq.~5! that R0, R1, and thus the transmissio
coefficientt can be uniquely determined byT.
et
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Usually, wm should be complex variable, thus Eq.~5!
gives a four-dimensional nonlinear dynamical mappi
@Re(wm),Re(wm21),Im(wm),Im(wm21)#. Generally, in a
nonlinear dynamical mapping with degrees of freedo
greater than 2, there will be a so-called Arnold diffusio
@30,31#. As a result, one cannot guarantee the existence
particular bounded orbit„Re(wm),Im(wm)… over arbitrary
distance on the nonlinear system. Fortunately, thanks to
conservation of probability current@J[Im(wmwm21* )
5T2sink# in our problem, the above mapping can be r
duced to a two-dimensional one, thus ruling out the possi
ity of the Arnold diffusion. Following Bountiset al. and
Wan and Soukoulis@32,33#, we introduce the following two
variables:

xm5
uwmu2

T2
,

ym5
Re~wmwm21* !

T2
, ~8!

and obtain the reduced nonlinear dynamical mapping for
above nonlinear system:

xm5
ym11

2 1~J/T2!2

xm11
; n,

ym52ym111xmS E224

2cosg/2
1

E

2cosg/2
lTu2xmD , ~9!

2<m<N21.

At the boundaries,

xN5
yN11

2 1~J/T2!2

xN11
,

~10!

yN5
2E

2cosg/2
yN111xNS E

2cosg/2
luTu2xN1

E222

2cosg/2D ,

x15
y2

21~J/T2!2

x2
,

~11!

y15
2E

2cosg/2
y21x1FluTu2x11S E2

2

ED G ,
with the initial conditionxN1151, yN115cosk.

From Eq.~8!, we can get the expression for transmissi
coefficient:

t5
4sin2k

x11x022y1cosk12sin2k
, ~12!

wherex0 ,x1 ,y1 can be obtained by iterating Eq.~9! from the
output end to the input end of the nonlinear system.

III. RESULTS AND DISCUSSIONS

The main results are shown in the figures.
In Figs. 2 and 3, we show how the input intensity vari
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with transmitted intensity with fixed energy, magnetic flu
and nonlinearity parameter.

Figure 2 is to show the effect of the magnitude of t
nonlinearity parameter on theT22uR0u2 relation under fixed
magnetic flux. We chooseE51, k5p/3, and magnetic flux
F50.1F0. From the figure we can see that the incident
tensity uR0u2 is a single-valued function of the transmitte
intensity T2, while T2 is a multivalued function ofuR0u2,
which is the source of multistability. The multistability ca
result in resonant transmission, but there are interrup
smooth or monotonic regions accompanied by narrow bu
of irregular variations, especially for largeT. Finally, with
the increase of transmitted intensity, the incident wave a
plitude diverges and thus no transmission is possible. In
case, the map entered the nontransmitting region@28#.

In Fig. 3 we aim to show the effect of magnetic flux o

FIG. 2. The relation betweenT2 and uR0u2 for different nonlin-
earity parameters withF50.1F0, andE51. ~a! l51, ~b! l50.5,
~c! l50.1.
-

g
ts

-
is

the T22uR0u2 relation. In this case,E51.0, k5p/3, l
51.0. Figure 3~a! is the case with zero magnetic flux. The
is no transmission gap in this figure. Figure 3~b! corresponds
to a magnetic fluxF50.2F0, we find that there is a gap in
this case. For a larger magnetic flux as shown in Fig. 3~c!,
the gap is much larger. Now the transmitting region lies
the region 0.431<T2<0.758 only. From the above result
we can see that the effect of magnetic flux on theT2R0
relation is to broaden the transmission gap.

We show in Fig. 4 the transmission coefficientt as a
function of energyE for given transmitted intensityT2, mag-
netic flux F, and nonlinearity parameterl. We see in Fig.

FIG. 3. TheT2–uR0u2 relation as a function ofF with l51,
E51. ~a! F50, ~b! F50.2F0, ~c! F50.3F0. Note that the trans-
mission region in~c! is in the range 0.432<T2<0.757.
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4~a! that when no magnetic flux is added to the system
the nonlinearity parameter is 0, the transmission ex
throughout the whole energy band of the linear lea
(22.0,2.0) and the transmission is close to resonant tra
mission for the low-energy regions~deep center of the en
ergy band!. In Fig. 4~b!, a magnetic flux is added but th
nonlinearity parameter is 0, the transmission in the low
energy region is inhibited, and the transmission spectra

FIG. 4. Transmission coefficientt as a function of energy with
fixed output intensityT250.1.~a! F50, l50, transmission occurs
when E lies between 22 and 2. ~b! F50.1F0, l50, a
transmission-inhibited region emerges in the range20.447<E
<0.447. ~c! F50.1F0, l50.1. Now transmission occurs in th
positive-energy part of the inhibited region of the correspond
linear case as shown in~b!.
d
ts
s
s-

r-
is

also symmetric with respect to zero energy~the energy band
center! as in Fig. 4~a!. Only when the energy of the inciden
electron is greater than a critical valueEc does transmission
occur. In this figure,Ec50.447. This critical value increase
with the increase of the magnetic flux until whenF
50.5F0 and transmission in the energy band of the line
leads is inhibited, then it decreases when the magnetic
increases from 0.5F0. As F>F0, the above phenomeno
recurs. So the critical value has a periodF0 in magnetic flux
and it is symmetric with respect to 0.5F0. When the nonlin-
earity parameter is nonzero@Fig. 4~c!#, we find that there will
be transmission in the inhibited region for the correspond
linear system. Moreover, transmission will occur even wh
the magnitude of the nonlinearity parameter is very sm
~for example, even whenl51029, there still exists a trans
mission peak significantly greater than zero in the inhabi
region for the corresponding system!. In details, whenl is
positive, the transmission will occur in the positive-ener
region of the ‘‘inhibited region,’’ but in the negative-energ
region of the ‘‘inhibited region,’’ there is no transmissio
phenomenon, moreover the transmission coefficient
proaches zero even faster at this region than the case
zero nonlinearity parameter. In the case with negative n
linearity parameter, this transmitting region ‘‘moves’’ to th
negative-energy region of the ‘‘inhibited region’’ of the lin
ear system, while the positive-energy region of the cor
sponding ‘‘inhibited region’’ is transmission inhibited. Thu
the t2E spectral in the case with nonzero nonlinearity p
rameter is no longer symmetric with respect to zero ener

The existence of a transmission-inhibited region for t
corresponding linear system can be understood by inspec
the energy band of an infinite linear necklace syst
threaded by a magnetic flux.

From Eq.~4!, whenl50, we can obtain the energy spe
trum

E254S 11cos
g

2
coskD , ~13!

thus the eigenenergy of the necklace should lie in the ra
enclosed by the curves

2A12cos
g

2
, 2A11cos

g

2
~14!

and

22A11cos
g

2
, 22A12cos

g

2
, ~15!

which is plotted in Fig. 5. The permitted regions are deno
by 1,2,3,4,5,6. From the figure, we see that the permit
energy ranges from (22A2,2A2) when theF50. The en-
ergy band of the linear leads (22,2) lies in this range, so
transmission can occur throughout the whole energy ban
the leads. AsF increases from 0, the permitted energy
now determined by Eq.~14! and Eq.~15!, which depends on
magnetic flux. If the energy of the incident electron is sma
it might lie outside the permitted range, thus leading to
nontransmitting behavior. Quantitatively, as in the case
Fig. 4~b! (F50.1), the critical valueEc determined from the

g
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figure is about 0.447; from Fig. 5, the permitted range of
necklace system, we can find out that the permitted ene
should be greater than or equal to 0.447, or less than or e
to 20.447. The two results are in exact agreement with e
other.

The occurrence of the transmission peaks in the inhib
region for the corresponding linear system in the case w
nonzero~even though it can be very small! nonlinearity pa-
rameter is the most interesting phenomenon of our res
This transmission behavior is completely due to nonlinea
and its nature is nonperturbative. It can be understood
follows. When the nonlinearity parameter is nonzero, the
ergy band of the necklace system has been changed. An
originally inhibited energy of the linear system may beco
permitted energy in the nonlinear system. Thus the electr
with energy located in the inhibited region of the linear sy
tem may tunnel through the nonlinear system inducing
excitation in it since its energy is now in the permitted regi
of the nonlinear system. In order to see more clearly,
show in Fig. 6 and Fig. 7 the spatial distribution of wa
amplitudexn for transmitting and nontransmitting behavio
Figure 6 corresponds to a transmitting peak atE50.4310,t
50.997 88 forl50.1,F50.1,T250.1. We see that it is an
extended wave. In Fig. 7 it corresponds to a nontransmit
behavior for the same parameters as Fig. 6 butl50.
An important difference now appears. It is now an expon
tially decaying wave function attenuating asxn;3
31025exp(2n/7).

Figures 8 and 9 are the transmission as a function of m
netic flux for fixed energy, transmitted intensity, and nonl

FIG. 5. The energy band of the linear infinite necklace. T
permitted energy lies in the region enclosed by the curves of
~14! and Eq.~15! as shown in the figure denoted by 1,2,3,4,5,6.
e
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FIG. 6. The spatial distribution of electronic probability~not
normalized! xn corresponding to a transmitted behaviort
50.997 88 withE50.4310,l50.1, T250.1, F50.1F0. It is an
extended wave.

FIG. 7. The spatial distribution of electronic probability~not
normalized! xn corresponding to a nontransmitted behaviort50
with E50.4310,l50, T250.1, F5F0. It is an exponentially de-
caying wave, attenuating asxn;exp(2n/7). The dotted line is the
above fitting function.
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earity parameter. Figure 8 is to investigate the effects
nonlinearity on the transmission spectral for the energy at
band edge of the lead with energyE51.98 and fixed output
intensityT250.1. We see that the transmission coefficien
a periodic function ofF with a periodF0 no matter the
magnitude of the nonlinearity parameter. And we see that
transmission coefficient is symmetric with respect to 0.5F0.
WhenF50.5F0, the transmission coefficient becomes ze
In a closer look, asF is approaching 0.5F0, the transmission
coefficient decays to zero much more rapidly when in
case with nonzero nonlinearity parameter. This can be s
from Eq. ~9!. At first, we consider the case in whichl50.
When g→p, cos(g/2)→0, as a sequence, the map will d
verge asyn;yn11, thus leading to a nontransmitting beha
ior. When the nonlinearity parameter is nonzero, the m
diverges asyn;yn11

2 , obviously, it increases much faste
than the linear case for the sameF. Physically speaking
whenF50.5F0, the phase factor imposed by the magne
flux on the wave function of the electrons on the two arms
a loop isp and 2p, respectively, thus the outgoing wav
will be suppressed due to interference. So, the transmis
coefficient is extremely small. We also observe that whel
is nonzero, the position of the transmission peak is shif
from the position of transmission peak of the correspond
linear system. We also considered the case with negativl.
But numerical studies show that there is not much differe
between the case with negative and positive nonlinearity
rameter. It can also be seen from the previous figures th
the band edge of the lead, the transmission seems insen
to the nonlinearity parameter sinceE52.0 always belongs to
the permitted region and the energy very close to 2.0

FIG. 8. The relation betweent andF for energy near the energ
band edgeE51.98, andT250.1. The three curves correspond
three different nonlinearity parameters. AtF50.5F0, they all ap-
proach zero.
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‘‘easy’’ to be in the permitted region for anyF ~see Fig. 5!.
For the case with lower energy, the results are quite

ferent from the case at the band edge of the lead~larger
energy!. In Fig. 9, we plot the results of an energyE50.01
and fixed output intensityT250.1 for different nonlinearity
parameters. Figure 9~a! is the case thatl50. For this linear
case, the transmission peak is very sharp, and only wheF
is very close tokF0 (k50,61,62, . . . ) is thetransmission
coefficient significantly greater than 0. In the case of a po
tive nonlinearity parameter, the results are shown in F
9~b!. Now new peaks around the ‘‘old’’ peak emerge. T
locations of these new peaks are relatively ‘‘farther awa
from kF0. However, when the nonlinearity parameter
negative, which is the case of Fig. 9~c!, the transmission is
drastically suppressed by nonlinearity. The occurrence
transmission peak only atkF0 for the linear system can b
understood as follows: In this case only when the magn

FIG. 9. The relation betweent andF for low energyE50.01.
~a! l50, ~b! l51, and~c! l521. We can see that transmission
drastically suppressed by nonlinearity in~c!.
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flux is close tokF0 doesE50.01 belong to the permitted
energy of this system; whenF increases~or decreases! from
these values,E50.01 moves outside of the energy band
the necklace loop system. These results are also in agree
with that of Fig. 4, where we find that a positive nonlinear
parameter will cause ‘‘new’’ transmission peaks in the po
tive part of the inhibited region of the corresponding line
system and a negative nonlinearity parameter will hasten
increase of (xn ,yn) and therefore lead to the suppression
electronic transmission in the positive part of t
transmission-inhibited region. It can be implied that wh
E520.01, a positive nonlinearity parameter will strong
suppress the transmission while a negative one will enha
it.
ev
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In summary, we have investigated the electronic transp
properties through a mesoscopic ring with nonlinear impu
at the loop nodes and obtained some interesting results.
find that the transmission behavior in this system is dra
cally affected by nonlinearity. In a nonlinear system, t
transmission coefficient is no longer uniquely determined
input intensity but by output intensity. When the nonlinear
parameter is nonzero, there will be transmission in
transmission-inhibited region of the corresponding line
system. In detail, a positive~negative! nonlinearity will en-
hance the transmission of electrons with energy in the p
tive ~negative! part of the transmission-inhibited region
These results may be useful for the fabrication of quant
devices.
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